

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Implementation of Quadrupole Scan Technique for Transverse Beam Emittance Measurements at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

A. Green, D. J. Crawford, D. R. Edstrom Jr., P. R G. Piot, J. Ruan, and Y. M. Shin

Introduction

- ASTA
- What is beam emittance?
- Quadrupole magnets and the "thin lens" approximation.
- Quadrupole scan technique.
- Simulated & preliminary experimental results.
- Automation.

ASTA

Parameter	ILC nominal	Range
Bunch charge	3.2 nC	10pC to > 20 nC
Bunch spacing	333 ns	<10 ns to 10 s
Bunch train	1 ms	1 bunch to 1 ms
Train rep. rate	5 Hz	0.1 Hz to 5 Hz
Transverse emit.	25 mm-mrad	1 to 100 mm-mrad
r.m.s. bunch length	1 ps	10fs to 10ps
Beam energy	300 MeV	50-300 MeV

Beam Emittance

- Emittance is an important characteristic of charged particle beams (describes the quality of a beam).
- 6-D phase space $(x, p_x, y, p_y, z, p_z) \rightarrow$ three 2-D phase spaces \rightarrow three 2-D trace spaces (x, x'), (y, y'), and (z, z').

Emmanuel Branlard - http://emmanuel.branlard.free.fr/work/papers/html/2009ferm i/node18

 The particles of interest can be thought of as being bound by an ellipse and defined by a symmetric moment matrix.

$$\sigma(z) = \begin{vmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{vmatrix}$$

- Liouville's Theorem: area of the ellipse is a conserved quantity.
- Under boosts, only normalized emittance (ϵ_n) is conserved.
- Geometrical emittance:

$$\epsilon_{x} = \pi \cdot Area$$

$$= \gamma x^{2} + 2\alpha x x' + \beta x'^{2}$$

$$= \pi \cdot \sqrt{\det(\sigma_{x})}$$

• Normalized emittance: $\epsilon_{n_x} = \beta \gamma \epsilon_x$

Quadrupole Magnets

- B-field is zero at the center of the quad and increases as you approach the poles.
- From Maxwell's equations:

$$B' = \frac{dB_{\phi}}{dr} = \frac{8\pi I}{cR^2}$$

- "Magnetic Fields and Magnet Design" – J. Holmes, S. Henderson, Y. Zhang. USPAS. Jan., 2009.
- Optical Lens: rays of light come to a focus at the focal point. The farther off the axis, the stronger the focusing.
- Magnetic Lens: particles in the beam are given a momentum kick. Focus in one plane, defocus in the other.

Optical Lens

"Magnetic Fields and Magnet Design" – J. Holmes, S. Henderson, Y. Zhang. USPAS Jan., 2009.

Magnetic Lens

"Magnetic Fields and Magnet Design" – J. Holmes, S. Henderson, Y. Zhang. USPAS. Jan., 2009.

$$\frac{1}{f} = \frac{e}{pc} gL = \frac{gL}{B\rho}, \text{ where } g = \frac{dB_y}{dx}$$

$$k[m^{-2}] = \frac{1}{fL} = \frac{e}{pc} g = \frac{0.299 g[T/m]}{\beta E[GeV]} = \text{focusing strength}$$

Lorentz Force and RHR:

$$F = q[E + (v \times B)]$$

 Positive particle moving into the page would be deflected to the right.

"Thin Lens" Approximation

"Thick Lens" Model:

$$Q_{x} = \begin{vmatrix} \cos\phi & \frac{1}{\sqrt{|k|}}\sin\phi \\ \sqrt{|k|}\sin\phi & \cos\phi \end{vmatrix} \qquad \left[\phi = l\sqrt{|k|}\right]$$

$$Q_{y} = \begin{vmatrix} cosh\phi & \frac{1}{\sqrt{|k|}}sinh\phi \\ -\sqrt{|k|}sinh\phi & cosh\phi \end{vmatrix}$$

$$S = \begin{vmatrix} 1 & L \\ 0 & 1 \end{vmatrix}$$

Transfer matrix: $R = SQ \rightarrow \Sigma_f = R\Sigma_i R^T$

"Thin Lens" Approximation:

- "Thin lens" approximation treats the quad length as zero, while holding the focal length constant.
- $\frac{1}{f} = k \cdot l$, where k is the quad field strength and l is the effective quad length.
- When k is negative \rightarrow focusing quad.
- When k is positive \rightarrow defocusing quad.

$$Q_x = \begin{vmatrix} 1 & 0 \\ kl & 1 \end{vmatrix}$$

Quadrupole Scan

- 1. Select a single quadrupole magnet and an imaging screen (typically a YAG or OTR screen).
- 2. 'Scan' the magnet by varying the quad field strength and measure the rms beam size on the screen.

Emittance Calculation

- Plot beam size² vs. quad field strength.
- Apply a 2nd order polynomial fit to the curve to get three coefficients: $\Sigma_{11} = Ak^2 + Bk + C$
- Using the coefficients, you can calculate the beam matrix elements.
- From the beam matrix (Σ_{beam}), calculate the emittance and C-S parameters.

Quadrupole Scan

ASTA

- Quadrupole focusing strength is controlled by power supplies via the ACNET console.
- Focus the beam.
- Find the minimum spot size.
- Scan the quad by varying the current.
- Record the rms beamsize, via Gaussian fit, on a YAG screen (measured in μm or pixels).

Fig.1: Beam with default quad settings (beam size < 3 mm.).

Fig.2: Focused beam (beam size $< 100 \ \mu m$).

Preliminary Experimental Results

Parameter	Value
Beam Energy	~20 MeV
Bunch Charge	280 – 290 pC
α_x/α_y	-33.292/25.782
eta_x/eta_y	21.605/18.349
$\epsilon_{n_x}/\epsilon_{n_y}$	$2.95 mm \cdot mrad/8.14 mm \cdot mrad$
Beam Energy	~20 MeV
Bunch Charge	12 – 14 <i>pC</i>
α_x/α_y	-45.172/45.071
β_x/β_y	31.985/32.185
$\epsilon_{n_x}/\epsilon_{n_y}$	$2.05 mm \cdot mrad/5.06 mm \cdot mrad$

Simulation Results

Emittance evolution downstream of CAV2

"Possible 1st-beam lattice steup(s) with one cavity" – P.R.G. Piot, IOTA/ASTA User's Meeting, Jan. 2015

Sources Of Error

Tuning

- Accelerator is still in the commissioning stage and not yet complete.
- Beamline is not fully tuned for optimization.

Thin Lens vs. Thick Lens

- We are currently using the "thin lens" approximation.
- "Thick lens" model will yield more accurate results.

Automation

- Preliminary version of automated quad scan used last week:
 - Written in Python.
 - Decreased quad scan time from $\sim 2hr$ to less than 10min.

- Preliminary version of emittance and C-S parameter calculator written in Python:
 - Enter quad field range and beam parameters.
 - Displays plots, polyfit, geometrical and normalized transverse emittance, C-S parameters.

Summary

- ASTA injector/superconducting linac built for high level accelerator R&D.
- Emittance measurements are important for high quality beams.
- Measurements have been taken and are currently being analyzed.
- Shift from "thin lens" approximation to "thick lens" model.
- Further tuning and optimization needed.
- Simple and time saving automated quad scans have been successful.
- Full implementation of automated quad scan/emittance measurements.

Summary

Special thank you to the ASTA operators: Chip Edstrom, Jinhao Ruan, and Darren Crawford

Also, a special thank you to the following for technical discussions and support: Dan Broemmelsiek, Alex Lumpkin, Jamie Santucci, Charles Thangaraj, Giulio Stancari, Sasha Valishev, Philippe Piot, and Young-Min Shin.

References

- J. Holmes, S. Henderson, Y. Zhang. "Magnetic Fields and Magnet Design", USPAS, Jan. 2009.
- J. Holmes, S. Henderson, Y. Zhang. "Transverse Beam Optics, Part I". USPAS, Jan. 2009.
- J. Rossbach, P. Schmuser. "Basic Course on Accelerator Optics".
- D. Edwards, M.J. Syphers. "An Introduction to the Physics of High Energy Accelerators". Wiley-Interscience, 1993.
- S. Skelton. "Multi-quadrupole Scan for Emittance Determination at PITZ". DESY Zeuthen, Summer Student Program, 2007.
- M. Minty. "Diagnostics II". CERN Accelerator School, Sept. 2004.

Extra Slides

ASTA Quads/Imaging Screens

Green arrow = Quadrupole magnet

"Thin Lens" Approximation

- "Thin lens" approximation treats the quad length as zero, while holding the focal length constant.
- $\frac{1}{f} = k \cdot l$, where k is the quad field strength and *l* is the effective quad length.
- When k is negative \rightarrow focusing quad.
- When k is positive \rightarrow defocusing quad.
- Quadrupole magnets focus in one plane and defocus in the other.

Transfer Matrix

$$R = SQ = \begin{vmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ kl & 1 \end{vmatrix}$$

Solving for emittance

$$\begin{split} \Sigma_{11} &= \langle x_f^2 \rangle = (S_{11} + k l S_{12})^2 \langle x_i^2 \rangle + S_{12}^2 \langle x_i'^2 \rangle \\ &+ 2 S_{12} (S_{11} + k l S_{12}) \langle x_i x_i' \rangle \end{split}$$

$$\Sigma_{11} = Ak^2 + Bk + C$$

$$\Sigma_{11} = \frac{A}{l^2 \cdot S_{12}^2} \qquad \qquad \alpha = -\frac{\Sigma_{12}}{\epsilon}$$

$$\alpha = -\frac{\Sigma_{12}}{\epsilon}$$

$$\Sigma_{12} = \Sigma_{21} = \frac{B - 2\Sigma_{11} \cdot l \cdot S_{11} \cdot S_{12}}{2l \cdot S_{12}^2} \qquad \beta = \frac{\Sigma_{11}}{\epsilon}$$

$$\beta = \frac{\Sigma_{11}}{\epsilon}$$

$$\Sigma_{22} = \frac{C - \Sigma_{11} \cdot S_{11}^2 - 2\Sigma_{12} \cdot S_{11} \cdot S_{12}}{S_{12}^2} \qquad \gamma = \frac{\Sigma_{22}}{\epsilon}$$

$$\gamma = \frac{\Sigma_{22}}{\epsilon}$$

